VRSM VRrM	VVrevs	$\begin{gathered} \mathrm{ID}\left(\operatorname{Tamb}=45^{\circ} \mathrm{C}\right) \\ 4 \mathrm{~A} \end{gathered}$		
V	V	Types	$\begin{gathered} \mathrm{Cmax} \\ \mu \mathrm{~F} \end{gathered}$	Rmin Ω
100	40	SKB B 40 C3200/2200	10000	0,25
400	125	SKB B 80 C3200/2200	3000	0,8
800	250	SKB B 250 C3200/2200	1700	1,6
900	380	SKB B 380 C3200/2200	1800	2,4
1200	500	SKB B 500 C3200/2200	800	3
$\underset{\mathrm{V}}{\mathrm{~V}(\mathrm{BR}) \mathrm{min}}$	VVRMS V	Avalanche Type		
1300	500	SKBa B 500 C3200/2200	800	3

Symbol	Conditions	SKB... SKBa ...	Units
10 IDCL	$\begin{array}{r} T_{\text {amb }}=45^{\circ} \mathrm{C} \text {;isolated }{ }^{1)} \\ \text { chassis }^{2)} \\ \mathrm{T}_{\text {amb }}=45^{\circ} \mathrm{C} \text {; isolated }{ }^{1)} \\ \text { chassis }^{2)} \end{array}$	$\begin{aligned} & 2,7 \\ & 4,0 \\ & 2,2 \\ & 3,2 \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$
IFSM $i^{2} t$ Prsm	$\begin{aligned} & \mathrm{T}_{\mathrm{y}}=25^{\circ} \mathrm{C}, 10 \mathrm{~ms} \\ & \mathrm{~T}_{\mathrm{y}}=150^{\circ} \mathrm{C}, 10 \mathrm{~ms} \\ & \mathrm{~T}_{\mathrm{y}}=25^{\circ} \mathrm{C}, 8,3 \ldots 10 \mathrm{~ms} \\ & \mathrm{~T}_{\mathrm{yj}}=150^{\circ} \mathrm{C}, 8,3 \ldots 10 \mathrm{~ms} \\ & \mathrm{t}_{\mathrm{p}}=10 \mu \mathrm{~s} ; \text { avalanche type } \end{aligned}$	$\begin{gathered} 115 \\ 100 \\ 66 \\ 50 \\ 2000 \end{gathered}$	A A $\mathrm{A}^{2}{ }_{5}$ $\mathrm{A}^{2} \mathrm{~s}$ W
VF $\left.V_{(\text {то }}\right)$ rT IRD tr fG		$1,25$ $0,85$ 24 20 $\begin{aligned} & 5 \\ & 5 \end{aligned}$ $\begin{gathered} 1 \\ 0,6 \end{gathered}$ typ. 10 2000	V V $\mathrm{m} \Omega$ ॥A $\mu \mathrm{A}$ 1 A mA mA $\mu \mathrm{s}$ Hz
Rtuja TV] Tstg	$\begin{aligned} & \text { isolated }^{1)} \\ & \text { chassis }^{2)} \end{aligned}$	$\begin{gathered} 22 \\ 15 \\ -40 \ldots+150 \\ -55 \ldots+150 \end{gathered}$	$\begin{gathered} { }^{\circ} \mathrm{C} / \mathrm{N} \\ { }^{\circ} \mathrm{C} / \mathrm{N} \\ { }^{\circ} \mathrm{C} \\ { }^{\circ} \mathrm{C} \end{gathered}$
RC Fu w	$\mathrm{P}_{\mathrm{R}}=1 \mathrm{~W}$	$\begin{gathered} 20 \ldots . .50 \\ 10 \\ 4 \\ 10 \end{gathered}$	Ω nF A g
Case		G 5	

Miniature Bridge Rectifiers
SKB B
... C 3200/2200
SKBa B . . . C 3200/2200

Features

- Compact plastic package with in-line terminals
- High blocking voltage
- SKBa with avalanche
characteristics
- Plastic material used for carries Underwriters Laboratories flammability classification $94 \mathrm{~V}-0$

Typical Applications

- Internal power supplies for electronic equipment
- DC power supplies
- Control equipment
- TV sets
- Avalanche types for inductive loads:
Solenoids,
Motor brakes

[^0]

Fig. 1 Rated output current vs. ambient temperature

Fig. 6 Rated overioad current vs. time

Fig. 9 Forward characteristics of a single diode

Fig. 2 Power dissipation vs. output current

Fig. 7 Rated reverse power dissipation vs. time

SEMIKRDN

SKB B . . . C 3200/2200 SKBa B . . . C 3200/2200
 Case G 5

Dimensions in mm

[^0]: ${ }^{1)}$ Freely suspended or mounted on an insulator
 ${ }^{2)}$ Mounted on a painted metal sheet of $\mathrm{min} .250 \times 250 \times 1 \mathrm{~mm}$

